Resources

Courses

CS50's Introduction to Artificial Intelligence with Python is the latest addition to the line up of Harvard University courses that build on CS50x, the online version of David Malan's highly acclaimed CS50 class aimed at teaching Computer Science to beginners. Self-paced based on 10-30 hours per week | Beginner

Machine Learning

Led by Andrew Ng, this course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (generative/discriminative learning, parametric/non-parametric learning, neural networks, support vector machines); unsupervised learning (clustering, dimensionality reduction, kernel methods); learning theory (bias/variance tradeoffs, practical advice); reinforcement learning and adaptive control. The course will also discuss recent applications of machine learning, such as to robotic control, data mining, autonomous navigation, bioinformatics, speech recognition, and text and web data processing. Last Updated - Mar 6, 2023

Machine learning is the most exciting branch of artificial intelligence. It allows systems to learn from data by identifying patterns and making decisions with little to no human intervention. In this course, you'll navigate the machine learning lifecycle by getting hands-on practice training your first machine learning model. Join instructor Kesha Williams as she explores widely adopted machine learning methods: supervised, unsupervised, and reinforcement. There's a focus on sourcing and preparing data and selecting the best learning algorithm for your project. After training a model, learn to evaluate model performance using standard metrics. Finally, Kesha shows you how to streamline the process by building a machine learning pipeline. If you’re looking to understand the machine learning lifecycle and the steps required to build systems, check out this course. 1h 50 min | Beginner | Released 5/30/2023